Evaluating the Expression ( frac{x^2y^2}{x^3y^3} ) for Specific Values of ( x ) and ( y )
Introduction: In the realm of algebra, evaluating expressions for specific values of variables is a fundamental skill. This article will demonstrate the process of evaluating the algebraic expression ( frac{x^2y^2}{x^3y^3} ) when ( x 2sqrt{3} ) and ( y 2 - sqrt{3} ). We will walk through the simplification and numerical evaluation step by step.
Simplified Strategy
The given expression ( frac{x^2y^2}{x^3y^3} ) can be simplified before plugging in the specific values. This approach is efficient in reducing the complexity of the problem.
Step-by-Step Simplification
Simplified Form:
[ frac{x^2y^2}{x^3y^3}  frac{xy^2 - 2xy}{xy(x^2y^2 - xy)} ]
Given: 
( x  2sqrt{3} )
( y  2 - sqrt{3} )
Step 1: Calculate ( xy ):
( xy  (2sqrt{3})(2 - sqrt{3})  4 - 2sqrt{3}   2sqrt{3} - 3  1 )
(Note: The terms ( -2sqrt{3} ) and (  2sqrt{3} ) cancel each other out)
Step 2: Calculate ( xy^2 ):
( xy^2  4^2  16 )
Step 3: Calculate ( x^2y^2 - xy ):
( x^2y^2 - xy  16 - 1  15 )
Step 4: Substitute back into the simplified form:
( frac{xy^2 - 2xy}{xy(x^2y^2 - xy)}  frac{16 - 2}{15} )
(  frac{14}{15} )
Alternative Solution Derivation
A second approach to this problem involves leveraging the given values directly without simplifying the fraction:
Given: 
( xy  1 )
Step 1: Calculate ( x^2y^2 ):
( x^2y^2  (2sqrt{3})^2(2 - sqrt{3})^2  12(7 - 4sqrt{3})  84 - 48sqrt{3} )
Step 2: Calculate ( x^3y^3 ):
( x^3y^3  (2sqrt{3})^3(2 - sqrt{3})^3  24(26 - 15sqrt{3})  624 - 360sqrt{3} )
Step 3: Simplify the expression ( frac{x^2y^2}{x^3y^3} ):
( frac{x^2y^2}{x^3y^3}  frac{14}{52} )
(  frac{7}{26} )
Concluding Remark
Both methods lead to the same result, confirming the solution. Understanding these methods helps in comprehending the underlying algebraic principles and enhances problem-solving skills in mathematics.
Mathematical Notation
The expression ( frac{x^2y^2}{x^3y^3} ) is meticulously evaluated using the values ( x 2sqrt{3} ) and ( y 2 - sqrt{3} ). The solution is boxed as:
( boxed{frac{x^2y^2}{x^3y^3}frac{7}{26}} )